185 research outputs found

    Cartographie des géorisques karstiques à l'aide d'images radar application à l'Île d'Anticosti, Québec

    Get PDF
    A significant of 10% of land surface constitute limestone, a fragile geological formation susceptible to rapid evolution. The evaluation of tools in recognising and analysing karst is therefore justified. The ability of imaging radar in measuring the intensity of karstification is of particular interest in this study.A method for mapping this georisk is developed. Interpretation of aerial photographs, representing the reality on the ground are compared with processed airborne radar images. In the latter, the karst is characterised by an important vertical hydrological flow. The correlation between the density of depressions and the length of waterways is poor. This due to the fact that onAnticosti island, several depressions are blocked after the glaciation and caused the numerous sinkholes to be pitched.A variable of the area occupied by the depressions is therefore taken into consideration. The images were analysed using a grid whose size is calculated based on the total number of depressions. While water surfaces, being good specular reflector, are easily spotted, pet bogs, acting as semi-specular reflectors, and the small sinkholes were often confounded with zones of low topographic backscatter present in the surrounding forest. The choice of the method of classification using a speckle-free image and texture analysis was therefore applied. The steep angle of the sensor create some important shadows areas witch used to get classified as water because both classes have similar numerical values. However, the results shows that a majority of the cells of the karstic intensity map of the radar image have a similar level of karstic intensity of those from the karstic intensity map made by airphoto interpretation

    Et si le chercheur était vulnérable ? : proposition d'une approche socio-éthique des vulnérabilités du chercheur en regard d'une controverse

    Get PDF
    Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal

    Assessment of spatio-temporal patterns of black spruce bud phenology across Quebec based on MODIS-NDVI time series and field observations

    Get PDF
    Satellite remote sensing is a widely accessible tool to investigate the spatiotemporal variations in the bud phenology of evergreen species, which show limited seasonal changes in canopy greenness. However, there is a need for precise and compatible data to compare remote sensing time series with field observations. In this study, fortnightly MODIS-NDVI was fitted using double-logistic functions and calibrated using ordinal logit models with the sequential phases of bud phenology collected during 2015, 2017 and 2018 in a black spruce stand. Bud break and bud set were spatialized for the period 2009–2018 across 5000 stands in Quebec, Canada. The first phase of bud break and the last phase of bud set were observed in the field in mid-May and at the beginning of September, when NDVI was 80.5% and 92.2% of its maximum amplitude, respectively. The NDVI rate of change was estimated at 0.07 in spring and 0.04 in autumn. When spatialized on the black spruce stands, bud break was detected earlier in the southwestern regions (April–May), and later in the northeastern regions (mid to end of June). No clear trend was observed for bud set, with different patterns being detected among the years. Overall, the process bud break and bud set lasted 51 and 87 days, respectively. Our results demonstrate the potential of satellite remote sensing for providing reliable timings of bud phenological events using calibrated NDVI time series on wide regions that are remote or with limited access

    Novel Association of HK1 with Glycated Hemoglobin in a Non-Diabetic Population: A Genome-Wide Evaluation of 14,618 Participants in the Women's Genome Health Study

    Get PDF
    Type 2 diabetes is a leading cause of morbidity and mortality. While genetic variants have been found to influence the risk of type 2 diabetes mellitus, relatively few studies have focused on genes associated with glycated hemoglobin, an index of the mean blood glucose concentration of the preceding 8–12 weeks. Epidemiologic studies and randomized clinical trials have documented the relationship between glycated hemoglobin levels and the development of long-term complications in diabetes; moreover, higher glycated hemoglobin levels in the subdiabetic range have been shown to predict type 2 diabetes risk and cardiovascular disease. To examine the common genetic determinants of glycated hemoglobin levels, we performed a genome-wide association study that evaluated 337,343 SNPs in 14,618 apparently healthy Caucasian women. The results show that glycated hemoglobin levels are associated with genetic variation at the GCK (rs730497; P = 2.8×10−12), SLC30A8 (rs13266634; P = 9.8×10−8), G6PC2 (rs1402837; P = 6.8×10−10), and HK1 (rs7072268; P = 6.4×10−9) loci. While associations at the GCK, SLC30A8, and G6PC2 loci are confirmatory, the findings at HK1 are novel. We were able to replicate this novel association in an independent validation sample of 455 additional non-diabetic men and women. HK1 encodes the enzyme hexokinase, the first step in glycolysis and a likely candidate for the control of glucose metabolism. This observed genetic association between glycated hemoglobin levels and HK1 polymorphisms paves the way for further studies of the role of HK1 in hemoglobin glycation, glucose metabolism, and diabetes

    Examining the clinical use of hemochromatosis genetic testing

    Get PDF
    BACKGROUND: Hereditary hemochromatosis leads to an increased lifetime risk for end-organ damage due to excess iron deposition. Guidelines recommend that genetic testing be performed in patients with clinical suspicion of iron overload accompanied by elevated serum ferritin and transferrin saturation levels. OBJECTIVE: To evaluate guideline adherence and the clinical and economic impact of HFE genetic testing. METHODS: The electronic charts of patients submitted for HFE testing in 2012 were reviewed for genetic testing results, biochemical markers of iron overload and clinical history of phlebotomy. RESULTS: A total of 664 samples were sent for testing, with clinical, biochemical and phlebotomy data available for 160 patients. A positive C282Y homozygote or C282Y/H63D compound heterozygote test result was observed in 18% of patients. Patients with an at-risk HFE genotype had significantly higher iron saturation, serum iron and hemoglobin (P\u3c0.001), without higher ferritin or liver enzyme levels. Fifty percent of patients referred for testing did not have biochemical evidence of iron overload (transferrin saturation \u3e45% and ferritin level \u3e300μg/L). Patients were four times more likely to undergo phlebotomy if they were gene test positive (RR 4.29 [95% CI 2.35 to 7.83]; P\u3c0.00001). DISCUSSION: One-half of patients referred for testing did not exhibit biochemical evidence of iron overload. Many patients with biochemical evidence of iron overload, but with negative genetic test results, did not undergo phlebotomy. A requisition to determine clinical indication for testing may reduce the use of the HFE genetic test. Finally, improvement of current genetic test characteristics would improve rationale for the test. CONCLUSION: A significant proportion of hemochromatosis genetic testing does not adhere to current guidelines and would not alter patient management

    Peripheral Blood Epi-Signature of Claes-Jensen Syndrome Enables Sensitive and Specific Identification of Patients and Healthy Carriers with Pathogenic Mutations in KDM5C.

    Get PDF
    Background: Claes-Jensen syndrome is an X-linked inherited intellectual disability caused by mutations in the KDM5C gene. Kdm5c is a histone lysine demethylase involved in histone modifications and chromatin remodeling. Males with hemizygous mutations in KDM5C present with intellectual disability and facial dysmorphism, while most heterozygous female carriers are asymptomatic. We hypothesized that loss of KDM5C function may influence other components of the epigenomic machinery including DNA methylation in affected patients. Results: Genome-wide DNA methylation analysis of 7 male patients affected with Claes-Jensen syndrome and 56 age- and sex-matched controls identified a specific DNA methylation defect (epi-signature) in the peripheral blood of these patients, including 1769 individual CpGs and 9 genomic regions. Six healthy female carriers showed less pronounced but distinctive changes in the same regions enabling their differentiation from both patients and controls. Highly specific computational model using the most significant methylation changes demonstrated 100% accuracy in differentiating patients, carriers, and controls in the training cohort, which was confirmed on a separate cohort of patients and carriers. The 100% specificity of this unique epi-signature was further confirmed on additional 500 unaffected controls and 600 patients with intellectual disability and developmental delay, including other patient cohorts with previously described epi-signatures. Conclusion: Peripheral blood epi-signature in Claes-Jensen syndrome can be used for molecular diagnosis and carrier identification and assist with interpretation of genetic variants of unknown clinical significance in the KDM5Cgene
    • …
    corecore